您现在的位置是: 首页 > 家电使用 家电使用
中央空调水循环系统设计论文_中央空调水循环系统的工作原理_1
ysladmin 2024-07-28 人已围观
简介中央空调水循环系统设计论文_中央空调水循环系统的工作原理 接下来,我将通过一些实际案例和个人观点来回答大家对于中央空调水循环系统设计论文的问题。现在,让我们开始探讨一下中央空调水循环
接下来,我将通过一些实际案例和个人观点来回答大家对于中央空调水循环系统设计论文的问题。现在,让我们开始探讨一下中央空调水循环系统设计论文的话题。
1.中央空调水系统的工作原理
2.中央空调水处理方案(最佳方案)
3.中央空调清理水循环系统和制冷系统施工方案谁帮我写一份
4.中央空调全水系统设计有哪些需要注意的
5.基于plc的中央空调的温度控制设计
中央空调水系统的工作原理
典型中央空调机组主要由冷冻水循环系统、冷却水循环系统及主机三部分组成:1、冷冻水循环系统
该部分由冷冻泵、室内风机及冷冻水管道等组成。从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。
2、 冷却水循环部分
该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。
3、 主机
主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下:
首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使冷冻水达到较低温度。最后,蒸发器中气化后的冷媒又变成了低压气体,重新进入了压缩机,如此循环往复。
中央空调水处理方案(最佳方案)
中央空调水系统节能技术案例分析关于下文总结出中央空调水系统的各项节能率为20.5%~31%,不到三年即可回收节能投资,而且空调系统运行正常,室内温湿度满足要求。那么,我为大家提供中央空调水系统节能技术案例分析,欢迎大家阅读浏览。
一、冷源改造技术
对于冷源机房容量选择大,通过台数控制不能满足安全、高效运行的情况,成熟的改造技术有:制冷机组变频控制;水蓄冷;增加低容量机组;扩大空调区域(例如,某政府高校约三万平米的综合楼的中央空调系统建成后,又将该系统惠及另外三栋共约九百平米的学员楼)等。以下结合有关工程讨论冷源改造技术。
(一)制冷机组变频改造
1、制冷机的性能系数COP现状
2007年就二十二栋国家政府机构办公楼和大型公共建筑通过测试或根据运行记录计算机组的性能系数COP,其机组的COP普遍低于公共建筑的强制性标准。
案例一A办公楼安装了三台500RT的离心式冷水机组(2001年投入运行),压缩机功率340kW。
三台机组通常只运行一台,即使在天气炎热的情况下,也仅开启两台。通过测试,制冷机组的COP在3.50~4.14之间,低于公共建筑的强制性标准,也低于设计工况的COP。
案例二B酒店的制冷机组为工频离心式机组(2001年投入运行),共有4?400USRT的机组,负荷最大时运行两台,机组的设计能效比为5.43。根据2007年10月22~31日对制冷机组运行参数的测试,1#机组的负荷率在41%~76%之间变化,COP值在3.33~4.27之间,低于公建标准。2#机组的负荷率在38%~86%之间变化,其中,在80%~86%的负荷率为10.93%,60%~69%负荷率的概率最大(34.82%)。COP值在2.88~4.62之间,低于公建标准。
2、制冷主机COP节能改造
冷水机组99%以上的时间运行在部分负荷工况。通过调节导流叶片开度来调节机组输出冷量的恒速离心机,最高效率点通常在70%~80%负荷左右,负荷率80%时对应的COP为5.885,负荷率100%时对应的COP为5.33,负荷率40%时COP为5.1,随着负荷降低,单位冷量能耗增加较显著。
变频运行的制冷机,其最高效率点可以在部分负荷下,如40%~50%负荷左右,50%负荷对应的COP为11.95。机组变频控制还能提高机组的功率因数,优化机组启动性能,避开喘振点,提高机组可靠性。
案例三C有限公司的中央空调采用了两台650冷吨离心式制冷机组。于2005年8月20日投入使用,冷水机组用于生产车间空调,24h不间断运行,负荷稳定,标准出水温度,夏天两台运行,冬天单台运行。
1#机于2007年9月改造为变频制冷机组。经过一年多的运行实践,无论是在大负荷运行或是小负荷运行(只要符合变频条件),都比工频机组节能。
根据2007年10月15日10:10~10月16日10:10的测试,两台机组负荷率在60%~67%。每天节省1439 kWh,节能率为20.85%。该机组工频运行的COP为7.03,变频时COP为10.05,即机组工频运行时的COP低,机组的节能效果好。
如果5~10月(合计6个月)按开两台制冷机组计算(考虑0.8的安全系数),11月~次年4月(合计6个月)运行一台机组,电费为0.55元 / kwh,每年可为公司节省18.2万元,实际运行表明,节省的运行费用大于18.5万元。
3、水蓄冷改造
利用既有的常规冷水机组,改造为水蓄冷的系统。其方法是利用消防水池、原有蓄水设施或建筑物地下室等作为蓄冷容器,增加放冷泵、充冷泵、板式换热器设备。此项改造技术具有如下优点:
(1)设备安全运行。避免?大马拉小车?;
(2)节能。系统高负荷运转时间大幅度增加,制冷效率可以提高5%~8%;
(3)经济效益。投资一般3~4年可以回收。水蓄冷不仅能为用户、为社会创造节能效益,而且创造的经济效益可用于其他节能改造项目,解决节能改造资金瓶颈问题;
(4)社会效益。平衡电网负荷,充分发挥电站的发电效益,减少电厂投资,净化环境。
案例四D科技大楼原为常规的中央空调系统(能源合同管理项目),制冷机组为离心式制冷机组,制冷量600冷吨。2008年改造为水系统中央空调,改造项目投入运行后,通过测试,得出以下几点:
(1)满足设计要求。低谷时段所蓄的冷量,可以满足该大楼白天3~4h空调所需的冷量。
(2)移峰填谷。在高温条件下,水蓄冷可以移峰888kWh,减少平谷段860kWh,增加1554kWh低谷段电量;在一般温度下,水蓄冷可以移峰684kWh,减少平谷段1034kWh,增加1414kWh低谷段电量,创造了社会效益和环境效益。
(3)经济效益:在高温条件下,每天节约电费1988元;在一般气候下,节约1885元。
(4)空调节能。节约电量3.6万kwh(不计发电厂的节煤量),占原用电量的5.70%;电费33675.3元,占总节约费用(75万元)的4.49%。
(5)保证并提高机组的安全可靠运行系数。
4、增加小容量机组
案例五E办公楼设计时为三大一小制冷机组,业主为了节省投资改为三台大机组,投入运行后,在低负荷时,机组无法启动或者喘振。通过增加两台风冷热泵机组才满足大楼的正常供冷以及设备的正常运行。
二、空调循环泵改造技术
(一)空调循环泵变频改造的条件
根据空调水系统的特点,借助智能自控技术、高速可靠的网络通讯技术及先进的控制软件,对空调水泵采用基于计算机网络的'智能控制变频技术。主要应具有以下优点:实时跟踪空调负荷,减少冷冻水、冷却水用量,减少能耗与运行费用;减少空调水系统设备的振动和磨损,延长设备的使用寿命;可以实现对水泵电机的?软启动?、?软停机?,减少电流对电机的冲击;提高电机的效率,改善其运行条件;降低电机和冷却塔的噪声。
(二)工程实例概述
案例六某高层商用写字楼,总建筑面积3.8万m2。大楼的中央空调系统冷热源采用两台600RT离心式冷水机组供冷,冬天由一台2.5t的燃油锅炉供暖,其它辅助设备。
由于气候状况与室内热源变化,改造前,5月、9月运行一台主机,冷却水泵两台,一台冷冻水泵,一台冷却塔(四台风机);7月、8月运行两台主机,两台冷冻泵,四台冷却泵,四台冷却塔(六台风机)。
控制水平停留在人工操作运行台数,水系统流量仅能在50%或100%运行。针对?大流量,小温差?运行状况进行节能改造,对两台冷冻水泵、两台冷却泵变频调速控制(设计要求,为避免变频水泵空转与倒流,不允许工频泵与变频泵同时运行)。冷热源控制系统的通信协议采用过程现场总线,控制器的算法采用模糊控制,水泵的运行状态以及中央空调系统中的主要过程参数实现界面集中监控。
(三)改造效果分析
1、测试结果
通过测试,可以得出以下几点:
(1)节能。制冷系统总节电率为24.85%。冷冻水泵、冷却水泵采用了模糊变频控制,不仅节省了水泵的用电量,而且提高了机组的能效比,1#机组能效比提高了12.79%,2#机组能效比提高了10.51%。
(2)具有经济效益。写字楼中央空调部分年用电58万元左右,按改造后年节省24.85%的费用计算,则每年至少节省14.41万元。投资3~4年完全能回收。
(3)降低了冷凝温度,提高了机组安全运行的可靠性。
(4)增大了供回水温差。1#机组:变频运行,冷却水温差为3.0℃,冷冻水温差3.6℃;工频运行,1#机组冷却水温差为2.4℃,冷冻水温差1.812。2#机组:变频运行,冷却水温差为2.4℃,冷冻水温差3.7℃;工频运行,2#机组冷却水温差为1.6℃,冷冻水温差2.3℃。
(5)减少了水流量。1#机组减少了27.25%.2#机组减少了27.93%。
(6)提高室内温度的控制精度。在变频控制下,房间温度24.2℃;工频控制下,房间温度23.9℃。
2、考核说明
经过近一年的运行,系统运行正常,但有两点需要说明。
(1)实际节电率为20.5%。主要原因为:改造前,中央空调水系统的运行状况处于节约型节能,也就是说,在某些时段不满足室内空气舒适度的要求(设备停止运行);改造后,系统根据室内舒适度运行,提高了环境服务质量。
(2)没有考虑具体工程的实际情况,冷却水泵的频率下限值调得太低。重新设定冷却水泵的频率下限值,机组工作正常。
三、结论
通过以上的讨论,既有中央空调水系统的节能技术有:主机变频、空调泵变频、水蓄冷、高效泵。非线性、大滞后的中央空调水系统适合采用智能控制算法。多项工程节能改造表明:中央空调水系统的各项节能率为20.5%~31%,不到三年即可回收节能投资,而且空调系统运行正常,室内温湿度满足要求。
;中央空调清理水循环系统和制冷系统施工方案谁帮我写一份
我们都知道空调能够在炎炎夏日给我们带来清新和凉爽,能够让我们的生活变得舒适,但是实际上空调方面的学问也是很高的,比如说中央空调水的系统在运行的时候通常都会带有大量的水垢、淤泥以及铁锈等一些具有腐蚀性的产物与一些藻类生物的粘泥出现,如果污垢长时间沉积下来的话,就会降低中央空调的制冷能力甚至减少其使用寿命,那么怎么办呢?下面就和小编一起来看看中央空调水处理的最佳方案吧。中央空调水处理最佳方案如下:
一、对水质进行分析
中央空调循环水要根据中央空调用水标准进行检测,其中检测的项目有:PH、TDS、总硬度、浊度、总铁、总铜、细菌总数等一系列内容。
注意:检测标准为DB31/T143-94
备注:1kg/m3=1000mg/l
二、水处理工作的具体流程
1,首先是要在水系统当中的冷却塔与膨胀水箱里面加一些剥离剂或者是杀菌灭藻剂(没有的话可以先去超市购买),接着再做里面加入一些活性量比较大的分散剂,这样使用水循环功能进行运行,运行的时间大概二十四个小时到四十八小时之内就可以,在完成了杀菌和灭藻以及剥离污垢的程序后,就可以进行排污工作了。
2,我们要在水系统当中增添一些清洗剂,这样做的目的是为了让去污效果更迅速更明显,我们要把系统里面污垢和铁锈全部都去除掉,然后使用水循环大约十二个小时到二十四个小时,这样排污的污浊度大概就会低于15PPM了,最后的工作就是要把Y型的过滤器上面的那一层过滤网拆掉并加以清洗干净。
3,接着在整个水系统里面加入一定量的预膜剂对其表面进行钝化,钝化二十四个小时之后就算运行完成,要使其的PH值限制在六到六点五中间,并且要把排污时候的污浊度下降到低于5PPM的位置。
4,在日常维护工作中,添加药剂的浓度要通过具体水质的状况进行适量添加,并且要由分析监控来决定它的投加量的多少,由于维持与修补系统当中的金属表面会形成一层保护膜,这样就能很容易地分散污垢和阻止成垢离子的形成,从而产生防腐、防垢与控制微生物生长的作用和效果。
以上就是关于中央空调水处理的最佳方案,相信我们目前已经有了一定的了解和认知,由于水处理方法是将一些水处理药剂按时地加入到中央空调冷却水系统与冷媒水系统当中,所以这样就能够达到减少腐蚀和保护中央空调的机组的功能。因此这种方法如今属于工业循环水处理、中央空调水处理等一些处理工作当中极为普遍的办法,也是一种既经济又有效的办法。
土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:/yezhu/zxbj-cszy.php?to8to_from=seo_zhidao_m_jiare&wb,就能免费领取哦~
中央空调全水系统设计有哪些需要注意的
中央空调化学清洗及水质处理施工方案
中央空调的冷冻水(和温水)、冷却水在循环使用过程中,会不同程度地含有溶解固体、气体及各种悬浮物,并引起诸如结垢、沉积物、腐蚀、微生物(藻类、菌泥)繁殖等问题。而这些问题 的存在,会直接影响中央空调的使用效果,并给中央空调机组的安全运行带来危害。为了提高中央空调的换热效率,防止或减少腐蚀,延长设备的使用寿命,应定期对系统进行清洗和保养。
中央空调一般由制冷机组、冷却塔、冷却水系统、冷冻水系统、空气调节系统等部分组成,而清洗主要是对制冷机组内的热交换设备(冷凝器、蒸发器)和冷却水系统、冷冻水系统的管道进行物理、化学相结合的全面清洗,以还设备一个清洁的金属表面,提高热交换率,增加制冷量,节能降耗,延长设备使用年限。
一、中央空调化学清洗的意义:
中央空调系统运行一段时间后,在设备换热器水侧及冷却塔填料上形成了一层污垢(包括水垢、粘泥和菌藻等),这些污垢加速机组的腐蚀影响换热效率,特别是空调循环水系统。长期运行将滋生微生物,也将引起设备腐蚀。除去这些污垢才能恢复设备换热效率,保证系统正常运行。再配以适量水处理药剂(缓蚀阻垢剂和杀菌灭藻剂)投加,可保证设备长期稳定运行。化学清洗可使系统发挥最大冷却效果、降低能耗、延长设备使用寿命。
二、中央空调的清洗范围 :
冷却水系统:冷凝器、冷却塔及相关管道。
冷冻水系统: 蒸发器、风机盘管/表冷器水侧。
相关管道循环风系统: 过滤器、风机盘管/表冷器风侧等。
三、中央空调化学清洗流程 :
中央空调化学清洗工艺流程包括不停机清洗和停机清洗;不停机清洗一般是将药剂加入循环系统内,依靠系统循环泵循环清洗,不影响机组的正常运行。
四、产品及工程服务,我们提供以下中央空调清洗服务项目:
·中央空调不停机清洗·冷却水系统化学清洗及杀菌灭藻 ·冷冻水系统化学清洗及杀菌灭藻·水系统化学水处理工程·过滤网消毒
·冷凝器/蒸发器化学清洗·冷却塔填料化学清洗·风机盘管翅片清洗·风道系统清洗消毒
基于plc的中央空调的温度控制设计
中央空调全水系统设计需要注意事项:
(1)对管材要求:一般空调供回水干管多采用焊接钢管,当采用开式冷冻水循环系统时,冷冻供回水管宜采用镀锌钢管,与风机盘管连接的支管宜采用镀锌钢管丝扣连接。
冷却水系统管道多采用焊接钢骨,连接方式为焊接。
凝结水管可采用镀锌钢管或塑料管。镀锌管采用丝扣连接,塑料怜采用承插粘接或套箍粘接等形式。但需保证管道直管段不得塌腰。
(2)对阀门要求:空调供回水于管阀门宜采用闸板阀或蝶阀,接至风机盘管或空调机组的进出水管控制阀宜采用铜制闸阀或截止阀。
(3)在多种性质的管道和风道均安装在吊顶内时。空调水管宜安装在靠墙一侧平行敷设,并留出足够保温的操作距离。施工时必须与其他专业的管道和线缆综合考虑施工的顺序。
(4)敷没在管井内的空调水立管应全部采用焊接。保温前需进行强度试验,当立管上装有阀门时,其阀门的位置应在管井检查门附近,手轮或手柄应朝向易操作面处。
(5)当空调冷冻水管穿越楼板时应做绝热处理。
(6凡在吊顶内的暗装空调水阀门一律应进行绝热保温处理。
中央空调系统的组成
中央空调系统主要由冷热源、冷冻水系统、冷却水系统、冷却塔和空调末端等组成。与一般中央空调系统不同的地方是该系统的冷源是靠水冷机组提供的,热源是使用市政蒸汽通过热板换进行热量交换增加循环水水温来实现的。采用两台130KW的压缩式冷水机组提供冷源,用于制冷;采用两套热板换进行热交换增加循环水水温,用于制热。这种冷热源的配置方式达到了较好的节能效果。空调末端采用的是新风空调机组和风机盘管两种类型,新风机组主要用于保证室内新鲜空气的质量,控制送风温湿度;风机盘管通过热交换为室内提供冷量和热量。
1.2控制系统的组成
目前,中央空调的控制方法主要有:继电器控制、可编程逻辑控制(PLC控制)、直接数字控制器(DDC控制),更先进的则是采用建筑设备自动化系统(BAS)对中央空调等建筑设备进行监控和系统集成。继电器控制系统由于故障率高、系统复杂、功耗高等缺点已逐渐被淘汰。传统的中央空调控制方法是采用DDC控制方式,将各个温度、湿度检测点和控制点连接到多台DDC上,进行多点监控。但是由于现代智能建筑楼层较多,多组中央空调设备位于不同楼层,温湿度检测点分布于各个房间,采用DDC方式进行控制有着线路复杂、施工不便、资源浪费、系统的实时性和可靠性不高等缺点。PLC控制集成度低于DDC,可以自由编写,价格低,且运行可靠,抗干扰能力强,使用与维护均很方便,这些优点使其得到广泛的应用。
中央空调系统的现场设备有一台西门子的S7-200CPU226PLC作为主控制器;两个EM223数字量输入输出模块,分别为32DI/32DO和8DI/8DO;一个EM2318AI模拟量输入模块;一个EM2324AQ模拟量输出模块;一个EM321RTD热电阻输入模块,提供两路模拟量输入;一个MP277触摸屏最为上位机。上位机负责对整个系统的运行情况进行监测和控制,对各参数进行实时记录,并保存入实时数据库,系统的结构如图1所示:
图1中央空调系统结构图
2系统应用及功能
2.1冷水机组的应用及功能
冷水机组为整个系统提供冷源。冷冻水循环系统通过冷水机组后,将循环水水温降低。然后通过冷冻水泵、集水器供给空调末端。由于冷水机组的发展已经趋于成熟,本文不介绍其内部工作原理。为了满足不同冷量的需求,在冷水机组较为成熟的基础上,对冷水机组的投入数量以及冷量进行精确群控,以达到控制房间温度恒定,且处于功耗平衡的目的。相对于单冷水机组的中央空调系统,群控拥有更多的冷量冗余和更节能的运行策略,可以满足建筑群的不同时段对冷量的不同需求。
2.2控制系统的选型特点与功能
控制系统由S7-200系列PLC及HMI设备组成。在选型方面,由于西门子PLC的稳定性较强,而对于中央空调群控来说,无需大量冗余。所以可以选择西门子S7-200系列PLC来担当控制部分。由西门子EM231模块对现场温度和流量进行采集,以便于运算出当前系统冷量是否充足。通过调节冷冻水泵的转速来调节冷量的输送能力。由于中央空调的冷水机组可以通过出水水温和回水水温自动调节自身工作负荷。所以此类控制由冷水机组自行处理,不在群控PLC中予以干涉。
好了,关于“中央空调水循环系统设计论文”的讨论到此结束。希望大家能够更深入地了解“中央空调水循环系统设计论文”,并从我的解答中获得一些启示。